eConceptual

Estimated reading time: 5 minutes

Scapular fractures are not something we see every day in practice. In fact, they form a very small percentage of overall fractures. But whenever a scapula is fractured, it usually tells a bigger story — one of high-energy trauma and multiple associated injuries. That is why scapular fractures deserve attention far beyond just the bone itself. 

This blog walks through how to understand, evaluate, classify, and manage scapular fractures, with emphasis on why these injuries should never be taken lightly. 

Why Scapular Fractures Matter?

Scapular fractures account for roughly 3–5% of shoulder girdle fractures and less than 1% of all fractures. Despite this low incidence, they are important because: 

  • Around 90% of patients have associated injuries 
  • Nearly 5% have associated mortality, usually due to severe accompanying trauma 

So when a scapular fracture is identified, it should immediately raise suspicion of high-velocity injury and polytrauma

Mechanism of Injury 

Scapular fractures are almost always the result of high-energy trauma. The mechanism can broadly be divided into direct and indirect injuries. 

Direct Trauma 

This usually occurs due to a direct blow to the shoulder or chest, such as in road traffic accidents. These patients often have: 

  • Rib fractures (single or multiple) 
  • Pulmonary contusions 
  • Pneumothorax or hemothorax 

Chest injuries are seen in 70–100% of such cases, making thoracic evaluation mandatory. 

Indirect Trauma 

Indirect injuries occur due to traction or avulsion forces. Common examples include: 

  • Avulsion fractures of the coracoid process 
  • Avulsion at the triceps origin from the inferior or lateral border of the scapula 
  • Impaction of the humeral head causing glenoid rim fractures 

Many glenoid rim fractures today are managed arthroscopically, sometimes with augmentation procedures like Latarjet, depending on instability and bone loss. 

Associated Fractures and Injuries 

Scapular fractures rarely occur in isolation. 

Commonly Associated Fractures 
  • Rib fractures – 44% 
  • Clavicle fractures – 25–26% 
  • Humerus fractures – around 12% (most common extremity long bone involved) 
Associated Systemic Injuries 
  • Neurological injuries (cerebral contusion, spinal cord injury, brachial plexus injury) – ~20% 
  • Thoracic injuries (pneumothorax, hemothorax, pulmonary contusion) – 15–20% 
  • Less commonly: 
  • Splenic rupture 
  • Renal contusion 
  • Subdural hematoma 

All of this reinforces one point — a scapular fracture is a marker of severe trauma

Clinical Examination: Look Beyond the Shoulder 

Local examination may reveal: 

  • Skin contusions or abrasions 
  • Hematoma 
  • Occasionally skin puckering 

But clinical assessment must always extend beyond the shoulder: 

  • Cervical spine evaluation 
  • Chest auscultation and respiratory assessment 
  • Complete neurological examination 
  • Vascular assessment of the upper limb 

Head injury, spinal trauma, rib fractures, and thoracic injuries must always be actively ruled out. 

Imaging and Radiological Assessment 
Standard X-ray Views 

Three views are considered essential: 

  1. True AP view in the scapular plane 
    (Body rotated ~30° so the glenohumeral joint is seen in profile) 
  2. Scapular Y view 
  3. Axillary view 
Role of CT Scan 

In complex scapular fractures, X-rays alone are often insufficient. 

  • CT scan with 3D reconstruction gives a clear understanding of fracture anatomy 
  • Most patients already undergo CT chest due to associated injuries, making scapular CT easily available 
  • CT helps in surgical planning and assessing articular involvement 
Important Anatomy to Remember 

The scapula consists of: 

  • Articular surface – the glenoid fossa 
  • Processes – acromion, coracoid, and spine 
  • Body – laterally placed 

Key anatomical points: 

  • Glenoid fossa is retroverted by about 20° relative to the scapular spine 
  • Important ligaments include: 
  • Coracoacromial ligament (between coracoid and acromion) 
  • Coracoclavicular and glenohumeral ligaments 

These structures play a major role in stability and biomechanics. 

AO Classification of Scapular Fractures 

In AO classification, scapula is numbered 14

14-A: Process Fractures 

Includes fractures of: 

  • Coracoid 
  • Acromion 
  • Spine of scapula 

The spine divides the scapula into supraspinatus and infraspinatus fossae. 

14-B: Body Fractures 
  • Simple fractures: exit at ≤2 points 
  • Complex fractures: exit at ≥3 points 

Most scapular body fractures are treated non-operatively

14-F: Glenoid Fossa Fractures 

Includes: 

  • Anterior rim fractures 
  • Posterior rim fractures 
  • Short oblique fractures (infra-, equatorial, or supra-equatorial) 

Most glenoid fractures also involve part of the glenoid neck

Surgical Approach Considerations 
  • Anterior rim fractures 
  • Best approached via the deltopectoral approach 
  • Useful when clavicle fracture or floating shoulder is also present 
  • Posterior rim and most other scapular fractures 
  • Require posterior approaches such as: 
  • Modified Judet 
  • Classic Judet 
  • Brodsky approach 
Key Radiological Parameters to Assess 

Always evaluate: 

  • Articular step-off or incongruity (>20–25% is significant
  • Glenopolar angle 
  • Medialization of the glenoid fragment 
  • Scapular body angulation 

Biomechanically, displaced fractures often lead to a Z-shaped deformity due to muscle pull. 

Conclusion: 

So the thing is, Scapular fractures may be uncommon, but they almost always indicate severe trauma. Proper evaluation means looking beyond the bone — assessing the chest, spine, brain, and neurovascular structures. 

While many fractures do well with conservative management, selected cases clearly benefit from surgery, especially when joint congruity or shoulder mechanics are affected. 

Understanding these injuries conceptually helps avoid missed diagnoses and long-term functional problems. 

0
0

Share

Leave a Reply

Your email address will not be published. Required fields are marked *